Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №2 с углубленным изучением отдельных предметов» г. Валуйки Белгородской области

«Согласовано» Руководитель МО учителей математики, информатики и физики УИЛ Гребёнкина Н.В. Протокол № / от « 18 » авиуста 2020 г.	«СОШ №2 с УИОП» г.Валуйки Евсюкова О.Н.	«Ужерждаю» Директор МСУУ СОПП №2 с УИОП Р Валунки Приказ ПОНУМЕНТОНИЯ ОТ « В 1 21000000000000000000000000000000000
---	---	--

Приложение к ООП среднего общего образования, реализующего ФГОС СОО

Рабочая программа

по учебному курсу «Физика» среднее общее образование ФГОС углубленный уровень

Рабочая программа учебного курса физики для 10-11 классов составлена в соответствии с Примерной основной образовательной программой среднего общего образования (одобрена Федеральным научно-методическим объединением по общему образованию, протокол заседания от 12 мая 2016 г. № 2/16) на основе авторской программы «Касьянов, В. А.Физика. Углубленный уровень. 10—11 классы : рабочая программа к линии УМК В. А. Касьянова : учебно-методическое пособие / В. А. Касьянов, И. Г. Власова. —М. : Дрофа, 2017

Рабочая программасоответствует требованиямФГОС ООО.

Рабочая программа рассчитана на 272 часа.

Класс	Количество	часов	В	Количество	часов	за
	неделю			учебный год		
10	4			136		
11	4			136		

Планируемые результаты освоения учебного предмета (курса)

Обучение физики в средней школе должно быть направлено на достижение следующих личностных результатов:

- 1) российскую гражданскую идентичность, патриотизм, уважение к своему народу, чувства ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн);
- 2) гражданскую позицию как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности;
- 3) готовность к служению Отечеству, его защите:
- 4) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- 5) сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
- 6) толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения, способность противостоять идеологии экстремизма, национализма, ксенофобии, дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям;
- 7) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 8) нравственное сознание и поведение на основе усвоения общечеловеческих ценностей;
- 9) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- 10) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;
- 11) принятие и реализацию ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной

деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;

- 12) бережное, ответственное и компетентное отношение к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь;
- 13) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
- 14) сформированность экологического мышления, понимания влияния социальноэкономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности;
- 15) ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни.

Метапредметные результаты освоения основной образовательной программы должны отражать:

- 1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- 2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- 4) готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 5) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- 6) умение определять назначение и функции различных социальных институтов;
- 7) умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;
- 8) владение языковыми средствами умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
- 9) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Требования к предметным результатам освоения углубленного курса физики должны включать требования к результатам освоения базового курса и дополнительно отражать:

1) сформированность системы знаний об общих физических закономерностях, законах, теориях, представлений о действии во Вселенной физических законов, открытых в земных условиях;

- 2) сформированность умения исследовать и анализировать разнообразные физические явления и свойства объектов, объяснять принципы работы и характеристики приборов и устройств, объяснять связь основных космических объектов с геофизическими явлениями;
- 3) владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования;
- 4) владение методами самостоятельного планирования и проведения физических экспериментов, описания и анализа полученной измерительной информации, определения достоверности полученного результата;
- 5) сформированность умений прогнозировать, анализировать и оценивать последствия бытовой и производственной деятельности человека, связанной с физическими процессами, с позиций экологической безопасности.

Выпускник на углубленном уровне научится:

- объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
 - характеризовать взаимосвязь между физикой и другими естественными науками;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;
 - самостоятельно планировать и проводить физические эксперименты;
- решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Выпускник на углубленном уровне получит возможность научиться:

- проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и законов;
- описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;

- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебноисследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

Содержание учебного предмета (курса)

10 класс

Физика в познании вещества, поля,пространства и времени

Физика — фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение, свободное падение. движение тела, брошенного под углом к горизонту. Движение точки по окружности. Поступательное и вращательное движение твердого тела.

Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения. Движение небесных тел и их искусственных спутников. Явления, наблюдаемые в неинерциальных системах отсчета.

Импульс материальной точки и системы тел. Закон изменения и сохранения импульса. Работа силы. Потенциальная энергия. Потенциальная энергия тела при гравитационном и упругом взаимодействиях. Кинетическая энергия. Мощность. Закон изменения и сохранения механической энергии. Абсолютно неупругое и абсолютно упругое столкновения.

Условие равновесия для поступательного движения. Условие равновесия для вращательного движения. Плечо и момент силы. Центр тяжести (центр масс) системы материальных точек и твердого тела. Равновесие жидкости и газа. Давление. Движение жидкостей и газов.

Динамика свободных колебаний. Амплитуда, период, частота, фаза колебаний. Колебательная система под действием внешних сил, не зависящих от времени. Вынужденные колебания. Резонанс.

Распространение волн в упругой среде. Поперечные и продольные волны. Отражение волн. Периодические волны. Энергия волны. Стоячие волны. Звуковые волны. Высота звука. Эффект Доплера. Интерференция и дифракция волн. Тембр, громкость звука.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 1.Измерение ускорения свободного падения
- 2. Изучение движения тела, брошенного горизонтально
- 3. Измерение коэффициента трения скольжения
- 4. Движение тела по окружности под действием сил тяжести и упругости

Молекулярная физика и термодинамика

Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики. Экспериментальные доказательства МКТ. Строение атома. Масса атомов. Молярная масса. Количество вещества.

Модель идеального газа. Распределение молекул идеального газа в пространстве. Распределение молекул идеального газа по скоростям. Абсолютная температура как мера средней кинетической энергии теплового лвижения частиц вещества. Шкалы температур. Давление газа. Связь между давлением и средней кинетической энергией поступательного движения молекул идеального газа. Основноеуравнение молекулярно-кинетической теории. Закон Дальтона. Уравнение Клапейрона—Менделеева. Изопроцессы. Изотермический процесс. Изобарный процесс. Изохорный процесс.

Агрегатные состояния вещества. Фазовый переход пар — жидкость. Испарение. Конденсация. Давление насыщенного пара. Влажность воздуха. Кипение жидкости. Модель строения жидкостей. Поверхностное натяжение. Смачивание. Капиллярность. Кристаллизация и плавление твердых тел. Структура твердых тел. Кристаллическая решетка. Механические свойства твердых тел.

Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Работа газа при расширении и сжатии. Работа газа при изопроцессах. Первый закон термодинамики. Применение первого закона термодинамики для изопроцессов. Адиабатный процесс. Тепловые двигатели. Второй закон термодинамики

Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно. Экологические проблемы теплоэнергетики.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 6.Изучение изобарного процесса в газе
- 7.Изучение капиллярных явлений, обусловленных поверхностным натяжением жидкости
 - 8.Измерение удельной теплоемкости вещества

Электродинамика

Предмет задачи электродинамики. Электрическое взаимодействие. Электрический заряд. Квантование заряда. Электризация тел. Закон сохранения электрического заряда. Закон Кулона. Равновесие статических зарядов. Напряженность электростатического поля. Линии напряженности электростатического поля. Принцип суперпозиции электростатических полей. Электростатическое поле заряженной сферы и заряженной плоскости.

Работа сил электростатического поля. Потенциал электростатического поля. Разность потенциалов. Измерение разности потенциалов. Электрическое поле в веществе. Диэлектрики в электростатическом поле. Проводники в электростатическом поле. Распределение зарядов по поверхности проводника. Электроемкость уединенного проводника и конденсатора. Соединение конденсаторов. Энергия электростатического поля. Объемная плотность энергии электростатического поля

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

9. Измерение электроемкости конденсатора

Лабораторный практикум

Повторение

11 класс

Электродинамика (продолжение)

Электрический ток. Сила тока. Источник тока. Источник тока в электрической цепи. Электродвижущая сила (ЭДС). Закон Ома для однородного проводника (участка цепи) Сопротивление проводника. Зависимость удельного сопротивления проводников и полупроводников от температуры. Соединения проводников. Расчет сопротивления электрических цепей. Закон Ома для замкнутой цепи. Расчет силы тока и напряжения в электрических цепях. Измерение силы тока и напряжения. Тепловое действие электрического тока. Закон Джоуля—Ленца. Передача электроэнергии от источника к потребителю. Электрический ток в металлах, растворах и расплавах электролитов, полупроводниках, газах и вакууме. Плазма. Электролиз. Примесный полупроводник составная часть элементов схем. Полупроводниковый диод. Транзистор. Сверхпроводимость.

Магнитное взаимодействие. Магнитное поле электрического тока. Линии магнитной индукции. Действие магнитного поля на проводник с током. Рамка с током в однородном магнитном поле. Действие магнитного поля на движущиеся заряженные частицы. Сила Лоренца. Масс-спектрограф и циклотрон. Пространственные траектории заряженных частиц в магнитном поле. Магнитные ловушки, радиационные пояса Земли. Взаимодействие электрических токов. Сила Ампера.

Магнитный поток. ЭДС в проводнике, движущемся в магнитном поле. Электромагнитная индукция. Способы получения индукционного тока. Опыты Генри. Правило Ленца. Самоиндукция. Индуктивность. Энергия магнитного поля тока. Магнитное поле в веществе. Ферромагнетизм.

Векторные диаграммы ДЛЯ описания переменных токов И напряжений. Резистор в цепи переменного тока. Конденсатор в цепи переменного тока. Катушка индуктивности в цепи переменного тока. Свободные гармонические электромагнитные колебания в колебательном контуре. Колебательный контур в цепи переменного тока. Использование электромагнитной индукции. Элементарная теория трансформатора. Генерирование переменного электрического тока. Передача электроэнергии на расстояние.

Электромагнитное поле. Вихревое электрическое поле. Электромагнитные волны. Распространение электромагнитных волн. Энергия, переносимая электромагнитными волнами. Давление и импульс электромагнитных волн. электромагнитных Радио-СВЧ-волны волн. средствах связи. Принципы радиосвязи и телевидения

Геометрическая оптика. Принцип Гюйгенса. Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное внутреннее отражение. Построение изображений и хода лучей при преломлении света. Линзы. Собирающие линзы. Изображение предмета в собирающей линзе. Формула тонкой собирающей линзы. Рассеивающие линзы. Изображение предмета в рассеивающей линзе. Фокусное расстояние и оптическая сила системы из двух линз. Человеческий глаз как оптическая система. Оптические приборы.

Волновые свойства света. Скорость света. Интерференция волн. Взаимное усиление и ослабление волн в пространстве. Интерференция света. Дифракция света. Дифракционная решетка. Дисперсия света. Практическое применение электромагнитных излучений.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

- 1. Исследование смешанного соединения проводников.
- 2. Изучение закона Ома для полной цепи.
- 3. Изучение явления электромагнитной индукции.
- 4. Измерение показателя преломления стекла.

- 5. Наблюдение интерференции и дифракции света.
- 6. Измерение длины световой волны с помощью дифракционной решетки.

Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Постулаты специальной теории относительности. Относительность времени. Замедление времени. Релятивистский закон сложения скоростей. Энергия и импульс свободной частицы. Взаимосвязь энергии и массы. Энергия покоя.

Квантовая физика. Физика атомаи атомного ядра

Предмет и задачи квантовой физики.

Тепловое излучение. Распределение энергии в спектре абсолютно черного тела.Гипотеза М. Планка о квантах. Фотоэффект. Опыты А. Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта.

Фотон. Опыты П. Н. Лебедева и С. И. Вавилова. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Дифракция электронов. Давление света. Соотношение неопределенностей Гейзенберга.

Модели строения атома. Теория атома водорода. Поглощение и излучение света атомом. Объяснение линейчатогоспектра водорода на основе квантовых постулатов Бора.Спонтанное и вынужденное излучение света. Лазеры.

Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы. Энергия связи нуклонов в ядре. Естественная радиоактивность. Закон радиоактивного распада. Искусственная радиоактивность. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления урана. Использование энергии деления ядер. Ядерная энергетика. Термоядерный синтез. Ядерное оружие. Биологическое действие радиоактивных излучений.

Классификация элементарных частиц. Лептоны как фундаментальные частицы. Классификация и структура адронов. Взаимодействие кварков. Фундаментальные взаимодействия. Ускорители элементарных частиц.

ФРОНТАЛЬНЫЕ ЛАБОРАТОРНЫЕ РАБОТЫ

7. Наблюдение линейчатого и сплошного спектров испускания.

Эволюция Вселенной

Образование астрономических структур. Солнечная система. Звезды и источники их энергии. Классификация звезд. Эволюция звезд и эволюция Солнечной системы

Галактика. Другие галактики. Структура Вселенной, ее расширение. Разбегание галактик. Закон Хаббла. Космологическая модель ранней Вселенной. Эра излучения. Нуклеосинтез в ранней Вселенной. Пространственновременные масштабы наблюдаемой Вселенной. Органическая жизнь во Вселенной. Темная материя и темная энергия.

Лабораторный практикум

Повторение

Тематическое планирование с указанием количества часов, отведенных на освоение предмета (курса)

№	Название темы	Количество				
п/п		часов,				
		отведенных на				
		изучение				
10 класс						
	Физика и естественно-научный метод познания природы	4				
	МЕХАНИКА	56				
1.	Кинематика материальной точки	19				
2.	Динамика материальной точки	11				
3.	Законы сохранения	10				
4.	Динамика периодического движения	6				
5.	Статика	4				
6.	Релятивистская механика	6				
	МОЛЕКУЛЯРНАЯ ФИЗИКА и ТЕРМОДИНАМИКА	39				
1.	Молекулярная структура вещества	3				
2.	Молекулярно-кинетическая теория идеального газа	10				
3.	Термодинамика	8				
4.	Жидкость и пар	5				
5.	Твердое тело	6				
6.	Механические волны. Акустика	7				
	ЭЛЕКТРОДИНАМИКА	21				
1.	Силы электромагнитного взаимодействия неподвижных	9				
	зарядов					
2.	Энергия электромагнитного взаимодействия неподвижных	12				
	зарядов					
	ЛАБОРАТОРНЫЙ ПРАКТИКУМ	8				
	ПОВТОРЕНИЕ	8				
	11 класс					
	ЭЛЕКТРОДИНАМИКА	45				
1.	Постоянный электрический ток	15				
2.	Магнитное поле	12				
3.	Электромагнетизм	8				
4.	Цепи переменного тока	10				
	ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ	39				
1.	Излучение и приём электромагнитных волн радио-и СВЧ-	7				
	диапазона					
2.	Геометрическая оптика	15				
3.	Волновая оптика	7				
4.	Квантовая теория электромагнитного излучения и вещества	10				
	ФИЗИКА ВЫСОКИХ ТЕХНОЛОГИЙ	14				
1.	Физика атомного ядра	9				
2.	Элементарные частицы	5				
	ЭВОЛЮЦИЯ ВСЕЛЕННОЙ	8				
	ЛАБОРАТОРНЫЙ ПРАКТИКУМ	10				
	ПОВТОРЕНИЕ	20				